Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
International Journal of Oral Science ; (4): 27-27, 2020.
Article in English | WPRIM | ID: wpr-826391

ABSTRACT

Tooth enamel is prone to be attacked by injurious factors, leading to a de/remineralization imbalance. To repair demineralized enamel and prevent pulp inflammation caused by biofilm accumulation, measures are needed to promote remineralization and inhibit bacterial adhesion on the tooth surface. An innovative material, poly (aspartic acid)-polyethylene glycol (PASP-PEG), was designed and synthesized to construct a mineralizing and anti-adhesive surface that could be applied to repair demineralized enamel. A cytotoxicity assay revealed the low cytotoxicity of synthesized PASP-PEG. Adsorption results demonstrated that PASP-PEG possesses a high binding affinity to the hydroxyapatite (HA)/tooth surface. In vitro experiments and scanning electron microscopy (SEM) demonstrated a strong capacity of PASP-PEG to induce in situ remineralization and direct the oriented growth of apatite nanocrystals. Energy dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD) and Vickers hardness tests demonstrated that minerals induced by PASP-PEG were consistent with healthy enamel in Ca/P ratio, crystal form and surface micro-hardness. Contact angle tests and bacterial adhesion experiments demonstrated that PASP-PEG yielded a strong anti-adhesive effect. In summary, PASP-PEG could achieve dual effects for enamel repair and anti-adhesion of bacteria, thereby widening its application in enamel repair.

2.
International Journal of Oral Science ; (4): 15-15, 2019.
Article in English | WPRIM | ID: wpr-772269

ABSTRACT

Tooth decay is prevalent, and secondary caries causes restoration failures, both of which are related to demineralization. There is an urgent need to develop new therapeutic materials with remineralization functions. This article represents the first review on the cutting edge research of poly(amido amine) (PAMAM) in combination with nanoparticles of amorphous calcium phosphate (NACP). PAMAM was excellent nucleation template, and could absorb calcium (Ca) and phosphate (P) ions via its functional groups to activate remineralization. NACP composite and adhesive showed acid-neutralization and Ca and P ion release capabilities. PAMAM+NACP together showed synergistic effects and produced triple benefits: excellent nucleation templates, superior acid-neutralization, and ions release. Therefore, the PAMAM+NACP strategy possessed much greater remineralization capacity than using PAMAM or NACP alone. PAMAM+NACP achieved dentin remineralization even in an acidic solution without any initial Ca and P ions. Besides, the long-term remineralization capability of PAMAM+NACP was established. After prolonged fluid challenge, the immersed PAMAM with the recharged NACP still induced effective dentin mineral regeneration. Furthermore, the hardness of pre-demineralized dentin was increased back to that of healthy dentin, indicating a complete remineralization. Therefore, the novel PAMAM+NACP approach is promising to provide long-term therapeutic effects including tooth remineralization, hardness increase, and caries-inhibition capabilities.


Subject(s)
Humans , Amines , Pharmacology , Calcium , Calcium Phosphates , Chemistry , Pharmacology , Dentin , Chemistry , Nanocomposites , Chemistry , Nanoparticles , Tooth Remineralization , Methods
SELECTION OF CITATIONS
SEARCH DETAIL